Suppose $X_{i}: f \longrightarrow x_{i} f$ then $D_{i}=\partial_{i} \circ X_{i}$
Two formulas for Schur Polynomials

$$
S_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\partial_{\omega_{0}}\left(x^{\lambda+\delta}\right) \stackrel{?}{=} D w_{0}\left(x^{\delta}\right)
$$

Tm $\partial w_{0} \circ x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n}^{0}=D w_{0}$

Lemma $\cdot \partial_{i} x_{j}=x_{j} \partial_{i}$ if $j \notin\{i, i+1\}$

- $\partial_{i}\left(x_{i} x_{i+1}\right)=\left(x_{i} x_{i+1}\right) \partial_{i}$

Checking Lemma and Lemma \Rightarrow Tm is now easy.
proof (Th)
Consider the following reduced decomposition

$$
w_{0}=\left(S_{1} \cdots S_{n-1}\right)\left(s_{1} \cdots S_{n-2}\right) \cdots\left(S_{1} S_{2}\right)\left(S_{1}\right)
$$

$$
\begin{aligned}
D_{w_{0}}= & \left(\partial_{1} x_{1} \partial_{2} x_{2} \cdots \partial_{n-1} x_{n-1}\right) \\
& \left(\partial_{1} x_{1} \cdots \partial_{n-2} x_{n-2}\right) \\
\vdots & \\
& \left(\partial_{1} x_{1} \partial_{2} x_{2}\right) \\
& \left(\partial_{1} x_{1}\right)
\end{aligned}
$$

by Lemona, we can move $X_{\text {-es to the }}$ right in each brackets to get

$$
\begin{aligned}
D_{w_{0}}= & \left(\partial_{1} \partial_{2} \cdots \partial_{n-1} x_{1} \cdots x_{n-1}\right) \\
& \left(\partial_{1} \partial_{2} \cdots \partial_{n-2} x_{1} \ldots X_{n-2}\right) \\
& \vdots \\
& \left(\partial_{1} \partial_{2} x_{1} x_{2}\right) \\
& \left(\partial_{1} x_{1}\right)
\end{aligned}
$$

Now we can move $X_{1} x_{2} \cdots X_{k}$ together to the right for all $k=1,2, \ldots, n-1$.

- Con we do similar procedure for all perms?
- Turns out that no.

E You can do if and only if permutation is 312 avoiding.
This is related to
\rightarrow Schubert Polynomials $S_{u}=\partial_{u^{-1} w_{0}}\left(x^{\delta}\right)$
\rightarrow Demazure Char. (Key polynomials)

$$
c h_{\lambda, w}=D_{w}\left(x^{\lambda}\right)
$$

$\lambda=\left(\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}\right)$ and $w \in S_{n}$

Ir 1 If $w \in S_{n}$ is 312_avoiding permutation then $c h_{\lambda, \omega}=D_{\omega}\left(x^{\lambda}\right)$ is a Schubert poly Su for some $u \in S_{n}$.

Tm 2 If $u \in S_{m}$ is 2143 -avoiding perm. then S_{u} is a certain Demasure character $c h_{\lambda, w}=D_{w}\left(x^{\lambda}\right)$ for some $w \in S_{n}$.

2143 -avoiding perms, are called vexillory
In order to understand these, we need to develop some combinatorics.

$$
S_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\text {This semi-stondord }} x^{\text {weight Tablece of shape } \lambda} \boldsymbol{\lambda}
$$

Combinatorial Formula for Su_{ω}
Re-graphs aka pipe dreams [Fomin-Stanley, Billey-Jockush-Stonley]

we replace some of the crossings

$$
+\rightarrow \perp
$$

then we get a wiring diagram
\rightarrow any two wires intersect at most once we con read a permutation

$$
\text { weight }(P)=\left(\beta_{1}, \beta_{2}, \ldots\right)
$$

Bi records \# crossings in $1^{\text {th }}$ row.
\rightarrow weight $(3,1,1,0,0)$
$\operatorname{Tm}[F S, B J S]$

$$
S_{w}=\sum_{p=\text { pipedrean for } w} x^{\text {weight }(p)}
$$

